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Working with a single variable 
 

Teaching note: 

When facing a new set of data, a data scientist often begins his analysis by examining individual 

variables in a variety of ways to see what it looks like.  A great deal can be learned from 

analyzing individual variables one at a time: you are familiar with means, medians, and standard 

deviations, but with visual tools such as KDE, CDF, and QQ plots, we can learn even more about 

the way a variable is distributed amongst a population.  This tutorial samples some of the ways 

we can explore individual variables in R. 

 

Getting the data: 

For this assignment, we’ll be using survey data that captures customers’ perceptions of their 

supplier. The data in HBAT.csv rates several attributes of the supplier “HBAT”.  (See the 

document HBAT-description for full details.) 

 

To load the data into your R session, you’ll use the read.csv function, which is really just a 

special case of the read.table function that loads the data from a CSV file as an R data frame.  

Change your working directory to the folder that contains our tutorial datasets, and enter the 

following line of R code: 

 
hbat <- read.csv("HBAT.csv") 

 

If you would prefer to use code that works regardless of R’s working directory (for example, if 

you are writing a script you will save and run again in the future), you could use the full address 

on disk of the data file, like so: 

hbat <- read.csv("C:\\datasets\\HBAT.csv") 

 

Examine the data set: 

A few commands let you quickly look at the whole data set: 

1. The names function is a quick way to get the list of variables: 
 
names(hbat) 

 

2. Look at the entire data frame by typing its name: 
 
hbat 

 

3. There was far too much data to fit on-screen at once, so try instead using the head 

function to look at only the first few rows and get a feel for the type of data in each 

variable: 
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head(hbat) 

 

4. The str function gives you an even more compact overview of the variables, showing 

the name, data type, and first few observations of each variable on a single line: 
 
str(hbat) 

 

5. The summary function gives you some simple statistics about each variable: the 

minimum, maximum, median, 1
st
 and 3

rd
 quartiles, and the mean: 

 
summary(hbat) 

 

Examine a single variable: 

Let’s focus on the variable Website_User_Friendliness for a while.  We can start by shortening 

its name to something a little easier to type: 

wuf <- hbat$Website_User_Friendliness 
 
Let’s learn as much as possible about this variable: 

6. Compute basic summary statistics 
length(wuf)  # the number of observations 
summary(wuf) 
mean(wuf) 
median(wuf) 
mode(wuf) 
quantile(wuf)  # by default, gives quartiles 
quantile(wuf,probs=seq(0,1,0.1))  # gives deciles 

 

7. Visualizing the data will help us to gain a better understanding of it than we can glean 

from statistics alone.  Is the variable evenly distributed? Does it follow a “bell curve” or 

normal distribution?  Is it lopsided or discontinuous?  A “dot plot” is a simple 

visualization of the distribution, placing one dot or tick mark on a horizontal line for each 

observation of the variable. 
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From the plot we can plainly see that many of the surveys ranked the website with scores 

between 3.0 and 4.0, suggesting something of a curved distribution. 

 

To generate this plot in R, we need to know a little about R’s plot function.  Every data 

point that is plotted must have Cartesian x and y coordinates.  In the above example, the x 

coordinate is the observed variable.  The y coordinates are (almost) the same, so that the 

dots will line up horizontally.  The following line of code generates y values by repeating 

the value 1 one hundred times (the same as the number of x observations): 

 
yvalues <- rep(1,100) 
 

Since we don’t want the dots to be precisely on top of one another and obscure their 

density, we use the R function jitter to make them just slightly different.  Our dot plot 

is actually a “jitter plot” now: 

 
yvalues <- jitter(rep(1,100)) 
 

We could plot the values with the simple code plot(wuf,yvalues) but it will not look very 

good.  Because R automatically determines the range of the x and y axes to display, it 

will cause the jittered values to spread out visually over the whole plot.  To constrain our 

perspective, we want to specify the limits of the u axis with a ylim parameter.  We also 

remove the y axis with yaxt="n" and its label with ylab="": 

 
plot(wuf,yvalues,ylim=c(0.8,1.2),yaxt="n",ylab="") 

 
 

8. A histogram is another way, perhaps a more intuitive way than a dot plot, to visualize the 

distribution of the variable.  Histograms are very easy to generate in R: 

 
hist(wuf) 

 

 
 

The bin widths by default do not give a great deal of detail.  We may specify with the 

breaks parameter where we want the dividing lines to go.  For example, to assign a bin 

to every tenth of a point between 2.0 and 6.0: 
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hist(wuf,breaks=seq(2,6,0.1)) 
 

 
 

By the way, we can also generate a quick text-based histogram called a “stem and leaf” 

plot with this simple line of R code: 

 
stem(wuf) 
 

Which gives us: 

 
  The decimal point is at the | 
 
  2 | 24 
  2 | 5556677889 
  3 | 000002222222233333444444444 
  3 | 555566666666666677777788888888999999 
  4 | 00011112333 
  4 | 55558999 
  5 | 111 
  5 | 567 
 

One of the drawbacks to a histogram is that there is no formal rule dictating the number 

or width of bins.  Narrower bins give more detail, but are sensitive to gaps when the 

number of observations is relatively small.  Wider bins may give a more reliable shape of 

the distribution, but with less detail.  Another drawback is that histograms of the same 

data may look different if the dividing lines are moved left or right. 

 

9. An alternative visualization that mitigates at least the latter of these problems is a kernel 

density estimate (KDE) plot.  Unlike a histogram, this is one that can’t be easily done by 

hand, so it is a new possibility that software like R has made available to data scientists: 

 
plot(density(wuf)) 
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Like a histogram, a KDE plot can be made smoother (by using a larger “bandwidth”) or 

more detailed (a smaller bandwidth).  Unlike a histogram, a KDE plot does not depend on 

any arbitrary choice about the location of bins.  To see a more detailed version of the 

KDE plot above, try it with a bandwidth of 0.1 or even 0.05: 

 
plot(density(wuf,bw=0.1)) 
plot(density(wuf,bw=0.05)) 

 

10. The histograms and KDE plots make it clear that the most frequent survey responses gave 

the website a score somewhere between 3 and 4, but just how many surveys does that 

reflect?  The human eye is not very good at estimating the area under a curve, so we turn 

to a visualization of the variable’s cumulative distribution function (CDF).  The CDF for 

each x represents the fraction of the data points that are less than (“to the left of”) x.  This 

allows us to see, for example, what fraction of the survey responses were greater than, 

less than, or between any given values: 

 
plot(ecdf(wuf))  # ecdf stands for 'empirical CDF' 
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From the CDF plot we can see that fewer than 20% (or 0.2) of the survey responses 

scored the website below 3 points, but about 80% scored it less than 4 points.  Fully 40% 

appear to have scored it between 3.5 and 4.0.  It would be easier to read the graph if it 

had a few more guidelines and tick marks, so let’s improve it like so: 

 
plot(ecdf(wuf),xaxp=c(2,6,40))  # put 40 tick marks between 2.0 and 6.0 
grid()  # add grid lines to the plot 
 

 

 

11. A variation on the idea of  CDF plot will allow us to ask one more question about the 

distribution of the data: is it “Normal” (i.e. a Gaussian distribution)?  One tool for doing 

this type of test is a quantile-quantile or “QQ” plot. 

 
qqnorm(wuf) 

 

 
 

In this plot, observations are plotted in order from the least to greatest with a y coordinate 
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equal to the observed value and x equal to the theoretically-predicted observation at that 

quantile.  A straight diagonal line would indicate a perfect fit to the theoretical 

distribution.  Add a guide line to the plot to see how far this variable actually deviates 

from the Normal: 

 
qqline(wuf) 

 

 
 

We see that the deviation is most pronounced at the tails.  The 98
th

 observation for 

example was much greater than the expected 97
th

 percentile value if the data were 

normally distributed. 

 

The more general function qqplot() can be used to compare a variable to other 

theoretical distributions or other empirical datasets.  To get more information about how 

to use a function in R, type a “?” followed by the function name, without parentheses: 

 
?qqplot 

 

 


