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Working with three or more variables 

 

 
Teaching note: 

We can analyze an individual variable in a number of ways to understand its distribution.  We 

can analyze pairs of variables to understand their relationships.  A special case of two-variable 

analysis is the time series.  Building on previous tutorials, we will begin in this lesson to look at 

some of the analyses we can do with three or more variables to show how they interact or fit 

together into a bigger picture.  The visualizations we will use include several interesting tools: 

interaction plots, small multiples, 3D surface plots and heat maps. 

 

Getting the data: 

For this tutorial we will use a 1985 dataset giving the specifications of a large number of import 

cars, available online in the UCI Machine Learning Repository at 

http://archive.ics.uci.edu/ml/datasets/Automobile.  This website is a great source of free data sets 

to experiment and learn with.  We have added the variable names to the CSV file.  To read the 

data into R, and briefly examine it, use: 

imports <- read.csv("imports-85.csv") 
str(imports) 
head(imports) 

 

The data requires a bit of clean-up.  In particular, many of the numeric variables are seen by R as 

“factor” variables.  To transform them into numeric data, we first transform them into character 

data (text) and then into numbers.  Clean up the horsepower, MPG, and price variables like so: 

 
imports$horsepower <- as.numeric(as.character(imports$horsepower)) 
imports$highway.mpg <- as.numeric(as.character(imports$highway.mpg)) 
imports$price <- as.numeric(as.character(imports$price)) 

 

Even worse, the number of cylinders is written out long-form (e.g. “four”, “six”) instead of with 

numerals.  R doesn’t understand these are numbers, so it puts them in an arbitrary order: 

 

 

We fix this by first re-naming the “levels” of the variable with numerals, and then converting the 

variable as we did the others: 

levels(imports$num.of.cylinders) <- c(8,5,4,6,3,12,2) 
imports$num.of.cylinders <- 
as.numeric(as.character(imports$num.of.cylinders)) 
 

Transforming the variables to numbers incidentally changed missing values from the placeholder 

“?” to the value NA which is understood by R to mean missing data.  To save us some headaches 

down the line, we’re going to simply discard the incomplete rows with na.omit(). 

 
imports <- na.omit(imports) 

http://archive.ics.uci.edu/ml/datasets/Automobile
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Visualizing an interaction: 

An “interaction effect” is present when the level of a third variable alters the relationship 

between two variables of interest.  For example, we’d like to know if the relationship between 

number of cylinders, and horsepower, is the same for expensive cars as it is for inexpensive ones. 

1. Essentially what we can do is separate the data into two groups and plot the relationship 

between cylinders and horsepower for both groups on the same plot.  (We did something 

similar at the end of the “working with two variables” tutorial.)  However, R has a 

convenient function just for producing interaction plots.  It automates a lot of the 

intermediate work, such as summarizing the data (e.g. taking the mean). 

 
interaction.plot(imports$num.of.cylinders,  # variable for the x axis 
                 imports$price>15000,       # the interaction variable 
                 imports$horsepower,        # variable for the y axis 
                 mean,                      # how to summarize the data 
                 pch=19,type="b",col=c("blue","red"),legend=TRUE) 

 

 

In this case the relationship seems similar for both groups, but it’s interesting to note the 

gaps in the data.  No cars priced under $15,000 had more than six cylinders, for example.  

We see a somewhat different interaction for the relationship between cylinders and 

highway miles-per-gallon: 
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2. What if we wanted to view this relationship in more than two price categories?  We can 

create a “multiplot”, also known as a “small multiples” visualization, in which essentially 

the same plot is repeated several times in parallel for a different subset of the data. 

 

The following code gives us a simple scatter plot for num.of.cylinders and horsepower 

variables.  The parameters remove the x and y axis tick marks and labels.  The par() 

statement reduces the margins to a minimum: 

 
par(mar=c(1,1,2,1)) 
plot(imports$num.of.cylinders,imports$horsepower, 
  main="cylinders x HP plot", xaxt="n",yaxt="n",xlab="",ylab="",pch=19) 
 

Now we’ll loop through the data by quartiles and reproduce the same graph four times.  

The line par(mfrow=c(2,2)) sets up a 2×2 multi-plot in which our plots will be placed, 

in order, from left to right and then top to bottom.  (Use the mfcol parameter instead if 

you wish to place plots from top to bottom first, then left to right.)  The next line finds the 

minimum, 1
st
 quartile, median, 3

rd
 quartile, and maximum value of price.  Then we use a 

simple for loop to produce four plots.   

 

The thisquartile variable is a logical vector – a vector of TRUE and FALSE values that 

tells us which data are in the quartile we’re focusing on now.  The plot() command in 

the loop is just like the one above except that it limits the data by the thisquartile 

index (so it only plots one quartile’s data in each of the four plots).  It also gives each of 

the four plots a unique title, and forces their x and y axes to have the same range. 

 
par(mfrow=c(2,2)) 
quarts <- quantile(imports$price) 
 
for(q in 1:4) { 
  thisquartile <- (imports$price >= quarts[q])  
                  & (imports$price <= quarts[q+1]) 
  plot(imports[thisquartile,]$num.of.cylinders, 
       imports[thisquartile,]$horsepower, 
       main=paste("price",quarts[q],"-",quarts[q+1]),  
       xaxt="n",yaxt="n",xlab="",ylab="",pch=19, 
       xlim=c(2,12), ylim=c(48,262)) 
} 
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More small multiples: 

The “small multiples” idea is often useful when comparing data by a non-quantitative variable.  

In our case, we might want to compare some feature of the data for different makes of cars.   

1. This plot repeats a histogram of horsepower for each import make: 

 
par(mfrow=c(5,5)) 
par(mar=c(1,1,2,1)) 
for(m in levels(imports$make)) { 
  hist(imports[imports$make==m,]$horsepower, 
       breaks=seq(25,275,25), 
       xaxt="n",yaxt="n",xlab="",ylab="", 
       main=m) 
} 

 

The resulting plot: 
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Using three dimensions: 

A typical plot uses x and y dimensions to represent two variables.  We can extend this by adding 

a z dimension to represent a third variable. 

1. We’ll plot the auto makes on one axis, a number of variables on another axis, and the 

mean value of each variable on the third (z) axis.  First, let’s generate the data: 

 
makes <- aggregate(imports,by=list(imports$make),FUN=mean) 
 

The aggregate() function splits the imports data frame into subsets by make, applies 

the mean() function to each subset, and returns a data frame of the summarized data.  It is 

a very versatile function.  Next, since there are a lot of variables measured in this data set, 

we’ll take a subset of five interesting ones to focus on: 

 
variables <-  
  c("highway.mpg","horsepower","curb.weight","wheel.base","price") 
zdata <- makes[variables] 

 

We named the subset zdata because it contains the mean values themselves but does not 

include the names of the makes or the names of the variables.  Those will be our x and y 

axes.  Because these variables are in very different scales (e.g. MPG ranges between 18 

and 47, while price ranges from 6000-35000), we will normalize each variable by its 

mean and standard deviation using the scale() function.  Finally we change zdata from 

a data frame to a simpler matrix because the plotting function we will use requires it. 

 
zdata <- scale(zdata) 
zdata <- as.matrix(zdata) 

 

A “surface plot” is a 3D version of a line graph in which the z values are represented by 

the apparent height of the points.  A surface plot needs numeric values for the variables, 

so we use the sequence 1:21 instead of the make names, and 1:5 instead of the variable 

names, and make a surface plot using the persp() function: 

 
persp(1:21,1:5,zdata, 
      theta=-40,phi=20,r=5,d=1,  # 3D positioning parameters 
      ltheta=-10,lphi=10,shade=1,  # 3D light/shade parameters 
      xlab="Make",ylab="Variable",zlab="Value" 
      ) 
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As flashy as a surface plot looks, though, it is almost indecipherable.  Part of the problem 

is the difficulty of placing the make and variable names on the x and y axes, but also  it is 

simply very hard for the eye to correlate z values with their x and y positions. 

 

2. A less flashy but more useful variation is a false-color plot, often called a “heat map”.  

Instead of using a third dimension, this data visualization uses color or a shade of grey to 

indicate the value of the third variable.  R has a heatmap() function but it does rather 

more than we need, so we will use the simpler image() function: 

 
image(1:21,1:5,zdata) 

 

 
 

You can see the basic idea already in this quick and dirty heat map, but we need to make 
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a few improvements.  We will suppress the numerical x and y axis tick marks with 

xaxt="n",yaxt="n", and add new axes with text labels by using the axis() function.  

This will necessitate setting wider margins on the left and bottom sides of the plot, using 

the par() function to set the mar parameter.  Finally, we’ll draw a subtle box around the 

plot area with box(). 

 
par(mar=c(7,6,2,2))  # make space in margins for axis labels 
 
image(1:21,1:5,zdata,   
      xlab="",ylab="", 
      xaxt="n",yaxt="n") 
 
axis(1,at=1:21,labels=makes[,1],las=2,cex.axis=0.8) 
axis(2,at=1:5,labels=variables,las=2,cex.axis=0.8) 
box() 

 

 
 

The resulting plot is much easier to read than the 3D surface plot we tried earlier.  

However, it’s still a bit unclear: which colors represent higher values and which represent 

lower values?  (Answer: red is lowest, white is highest)  We can specify alternate color 

schemes for the plot by specifying a col parameter.  Try col=rainbow(256), 

col=terrain.colors(256), or col=cm.colors(256) and see if you like the results. 

 

Personally, we don’t.  Fortunately, there exist third-party packages for R that can help 

you generate your own color schemes.  One is gplots, with the colorpanel() function. 

 
install.packages("gplots",dependencies=TRUE) # if you haven't already 
library(gplots) 
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This code creates a new palette consisting of 256 shades between white (for the lowest 

values) and red (for the highest): 

 
myshades <- colorpanel(256,"white","red") 

 

Now plug it in to the col parameter of your image() function: 

 
image(1:21,1:5,zdata, 
      col=myshades, 
      xlab="",ylab="", 
      xaxt="n",yaxt="n") 

 

And the result is easier to read, even if you are printing it on a black-and-white printer: 

 

 
 

 

 


