
1 
 

Time series analysis 

 

 
Teaching note: 

A special case of two-variable analysis is the study of a time series where one of the two 

variables is time.  In this case we may wish to understand how the other variable of interest 

changes over time.  We may look for a directional trend, and for evidence of a seasonal cycle, 

and use these to try to predict the future movements of the data. 

 

Getting the data: 

For time series analysis, you will be using historical monthly price data for the S&P 500 index 

from January 2000 to December 2012.  This data and similar data is available from Yahoo! 

Finance (for example, http://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Prices). 

 

Use the following code to read the CSV file and examine the structure of the dataset: 

 
Index<-read.csv("SP500.csv")        
head(index) 

 

One problem with this data from Yahoo! Finance is that it is provided in reverse chronological 

order.  We can flip it around with the following: 

 
Index <- Index[rev(rownames(index)),] 
head(Index) 

 

It will be helpful to wrap the data in an R time series object, which offers some affordances for 

plotting and data analysis based on the assumption that the data points are sequential and 

equidistant in time.  The ts() function creates the time series object: 

 
indexTS<-ts(Index,start=c(2000,1),end=c(2012,12),frequency=12) 

 

The frequency=12 parameter implies that there are 12 measurements per “time unit”, and the 

other parameters tell R that that the data starts from the first measurement in time unit 2000 and 

ends with the 12
th

 measurement in time unit 2012.  We recognize these as months in a span of 

years, but the same ts() function with different parameters could identify days within weeks or 

quarters within years, etc. 

 

 

Plot the data: 

1. Let’s take a look at the data.  Because it is wrapped in an R time series object, we can 

make a rough plot of all the variables with the simple line: 

 
plot(indexTS) 

 

http://finance.yahoo.com/q/hp?s=%5EGSPC+Historical+Prices
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2. That plot includes a little more information than we needed.  We can plot a single 

variable, the closing price on the first trading day of each month, with the following: 

 
plot(indexTS[,"Close"]) 
 

 
 

 

Determine trends and seasonality: 

 

1. A trend line refers to a smoothing of the data to show its general direction and hopefully 

minimize seasonal effects and random noise.  One of the simplest ways to determine a 

trend line is with a moving average. 

 

To implement a moving average, we take advantage of R’s filter() function for time 

series.  The second parameter of this function accepts a set of weights to be given to each 

of several data points in the moving average (a feature which would allow us to 

implement non-uniformly weighted moving averages if we wanted).  By default, the 
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moving average is “centered”, but a back-looking moving average is also possible.  

Consult ?filter for more details.  The expression rep(1/12,12) means to create a 

vector that repeats the value 1/12 twelve times. Twelve data points is a good choice for 

our moving average because it corresponds to the number of months in a year and may 

mitigate seasonality.  Finally, filter(indexTS[,"Close"],rep(1/12,12)) creates a 

12-month moving average.  We wrap it in the lines() function so that it will be added to 

the previous plot: 

 
lines( filter(indexTS[,"Close"],rep(1/12,12)), col="red" ) 
 

 
 

Some of the problems with moving averages are that they miss the big peaks and troughs 

in the data, and that they cannot be calculated for the endpoints.  Since you often want to 

use the trend line to predict the future, the latter is a big problem.  Another subtler 

weakness of our particular trend line is that with an even number of data points, it is a bit 

lopsided and doesn’t center perfectly on the data.  An odd number would produce a trend 

line slightly more faithful to the data. 

 

2. Another oft-used method for smoothing a time series is exponential smoothing or the 

“Holt-Winters method”.  You can compute and plot a quick Holt-Winters model with: 

 
plot(HoltWinters(indexTS[,"Close"])) 
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This code allows R to automatically determine what it deems to be optimal values for the 

α, β, and γ parameters.  If you wish to specify your own, or to specify other variations 

like a multiplicative model, the HoltWinters() function can accommodate this.  Type 

?HoltWinters for more details on the function.  For example, you could specify: 

 
plot(HoltWinters(indexTS[,"Close"],alpha=0.4,beta=0.4,gamma=0.4)) 
 

Consult a good textbook to understand what these parameters do. 

 

3. The autocorrelation function is a tool that data scientists use to diagnose seasonality in a 

time series.  It shows how well the data is correlated with itself at different amounts of 

lag.  If our data goes through an annual cycle, for example, we might expect a relatively 

strong correlation between each data point and the 12
th

 data point after it.  We can view 

the autocorrelation function with acf(). 

 
acf(indexTS[,"Close"]) 
acf(indexTS[,"Close"],lag.max=48)  # shows acf even further out 

 

 
 

In the plot, the x variable is “time units”, years in our case, so the x value of 1 actually 

corresponds to the 12
th

 lagged data point.  In this graph we see no spike of autocorrelation 

at 12 months or at any other point.  Instead we see a strong and monotonically decreasing 

autocorrelation in each of the first several data points.  This indicates that (as you would 

expect), the S&P500 index moves incrementally and in any given month will not be 

much different from its value in the previous month.  In fact this effect probably swamps 

the influence of any possible seasonal effect. 

 

4. We can let R do the work of separating out the trend line and seasonal component (and 

error component) of the data with the decompose() command.  According to its help file 

(?decompose), this uses a classical method employing moving averages. 
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indexDTS <- decompose(indexTS[,"Close"]) 
plot(indexDTS) 

 

 
 

 

Extend the time series with a prediction: 

 

1. If you can build a model to describe the data as a function of time, you can generate 

predicted values to extend the time series into the future.  It is unlikely that you can do 

this for the S&P500 index, but we’ll show you the code just as an exercise.  We will 

create a model based on the Holt-Winters method we used previously: 

 
HWmodel <- HoltWinters(indexTS[,"Close"]) 

 

Then use the model to predict the next five years (60 values): 
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prediction <- predict(HWmodel,n.ahead=60) 

 

Let’s plot the original time series next to the prediction.  Start by plotting the time series 

with xlim and ylim parameters that leaves space for the predicted values: 

 
plot(indexTS[,"Close"],xlim=c(2000,2018),ylim=c(700,1800)) 
 

Now add the predicted values: 

 
lines(prediction,col="red") 
 

 
 

The result is a prediction that takes into account the trend line at the end of 2012 as well 

as the apparent seasonality in the time series. 

 
 


